## **166.** The Catalytic Reduction of Organic Halogen Compounds: 5-Bromo-5-alkylbarbituric Acids.

By G. K. HUGHES, A. KILLEN MACBETH, and S. W. PENNYCUICK.

THE behaviour of the halogen atom in organic compounds in the presence of reducing agents has already been discussed (J., 1922, 121, 892; et seq.). As a particular case, it was observed (J., 1926, 1248) that one of the halogen atoms is removed from 5:5-dichloro- and 5:5-dibromo-barbituric acids on treatment with hydrazine hydrate. Baeyer (Annalen, 1864, 130, 133) recorded the difference in reactivity of two such atoms (see also Backes, West, and Whiteley, J., 1921, 119, 377) and Nightingale and Schaefer (J. Amer. Chem. Soc., 1932, 54, 236) submitted additional evidence in support of such behaviour by showing that 5:5-dibromobarbituric acid is converted into 5-bromo-7-alkyluracils by the action of alkyl-amines.

The absorption spectra of a series of barbituric acids and their halogen derivatives (J., 1927, 740) showed that the parent acids and the 5-halogeno-acids exist in the enolic form, whereas the 5:5-dialkyl- and the 5:5-dihalogeno-acids have a ketonic structure. The enolic modification is excluded in the 5-bromo-5-alkyl acids, and easy removal of the halogen atom is therefore to be expected in such cases. Preliminary observations showed that there was a considerable increase in the conductivities of alcoholic solutions of these acids on standing, and that this increase could be accelerated by the addition of a catalyst. These facts have now been used to examine the reaction and determine the rate of decomposition of the acids.

The solutions examined were made up to M/400-concentration of the bromo-acid in water of specific conductivity 3 gemmhos, containing alcohol ranging from 2 to 10% of the total volume. The alcohol present functions as a reducing agent, and Schiff's reagent and other colour tests showed that an aldehyde was always present as a reaction product. The presence of acetaldehyde was further shown by the isolation and identification of its dimedon compound, m.p. 148—150°. The reaction may accordingly be written R·Br + C<sub>2</sub>H<sub>5</sub>·OH = R·H + HBr + CH<sub>3</sub>·CHO. As the molecular ratio of the alcohol to the bromo-acid was rarely less than 800:1 in the experiments, variations in the alcohol concentration may be neglected. The reaction may therefore be regarded as unimolecular, and the corresponding formula applied.

Hydrobromic acid has the greatest conductivity of all the components of the reaction mixture, the other substances being weak electrolytes or non-electrolytes. Wood (J., 1906, **89**, 1831) gives  $3\cdot83 \times 10^{-5}$  and  $3\cdot7 \times 10^{-8}$  as the values of the dissociation constants of 5-ethyl- and 5:5-diethyl-barbituric acid respectively; and the values for the series 5-bromo-5-alkylbarbituric acids were found to be  $1\cdot08$ ,  $2\cdot25$ ,  $2\cdot51$ ,  $1\cdot96$ ,  $2\cdot76$ , and  $2\cdot98 \times 10^{-7}$  for alkyl = Me, Et, Pr<sup>a</sup>, Pr<sup>β</sup>, Bu, and  $isoC_5H_{11}$  respectively (Cox, Macbeth, and Pennycuick, J., 1931, 1871).

At any time t, however, the concentration of the bromo-acid is proportional to  $L_{\infty} - L_t$ , where L represents equivalent conductivity; and the expression is independent of the substances contributing to the conductivity provided that there are no abnormal developments in the common-ion effect. Integrating the unimolecular relation dx/dt = k(a - x)between two time limits, and writing the relationship of  $L_{\infty} - L_t$  to (a - x) referred to above, we obtain

$$k = 1/(t_2 - t_1) \cdot \log_e (L_{\infty} - L_{t_1})/(L_{\infty} - L_{t_2})$$

and since zero time values are unreliable, the expression is in its most convenient form. To simplify calculations we may reduce the expression to a modified form in which resistances are introduced instead of equivalent conductivities :

$$k = 1/(t_2 - t_1)$$
.  $\log_e (R_{t_1} - R_{\infty})R_{t_2}/(R_{t_2} - R_{\infty}) R_{t_1}$ .

The constancy of k may be examined by plotting log  $R_t/(R_t - R_{\infty})$  against time and



measuring the slope of the graph between the limits  $t_1$  and  $t_2$ .

The first observations were made with platinised electrodes (the platinumblack acting as the catalyst). Under these conditions, there was a steady fall in resistance which extended over several days, but reproducible results could not be obtained even when the cell was gently agitated mechanically throughout the experiment. Wood (loc. cit.) observed that solutions of 5-ethylbarbituric acid showed a considerable change in conductivity on standing, and we found that the other 5-alkyl acids we examined behaved similarly. Side reactions are therefore to be expected during the slow reduction of the bromo-alkyl acids, and since trustworthy results cannot therefore be looked for, the use of platinised electrodes was abandoned.

Reproducible results are obtained when the catalyst is distributed throughout the solution of the bromo-acid in the form of colloidal platinum. This was prepared as described by one of us (J., 1927, 2600) and several preparations of various activities were used. In order to maintain a check on any particular

sample of the colloidal solution in use in a series of experiments, the values recorded in the first experiment were compared with a set of control determinations carried out on the same substance on completion of the series. The agreement between the constants thus obtained was within the margin of experimental error when the age of the colloidal preparation did not exceed eight days.

| t.        | $R_{\iota}$ . | $R_{t} - R_{\infty}$ . | $\log R_t / (R - R_{\infty}).$ | t.             | $R_{t}$   | $R_t - R_{m_t}$ | $\log R_t / (R_t - R_{\infty}).$ |
|-----------|---------------|------------------------|--------------------------------|----------------|-----------|-----------------|----------------------------------|
|           | Bromome       | ethylbarbitur          | ic acid (I).                   |                | Bromoe    | thylbarbitur    | ic acid $(I)$ .                  |
| 2         | 1690          | 1404                   | 0.0806                         | 2              | 1760      | 1452            | 0.0835                           |
| 3         | 1380          | 1094                   | 0.1048                         | 3              | 1440      | 1132            | 0.1045                           |
| 4         | 1200          | 914                    | 0.1183                         | -<br>4         | 1240      | 932             | 0.1240                           |
| 5         | 1080          | 794                    | 0.1336                         | $\overline{5}$ | 1090      | 782             | 0.1442                           |
| 6         | 980           | 694                    | 0.1498                         | 6              | 994       | 686             | 0.1611                           |
| 7         | 911           | 625                    | 0.1636                         | 7              | 918       | 610             | 0.1775                           |
| 8         | 854           | 568                    | 0.1772                         | 8              | 855       | 547             | 0.1940                           |
| 9         | 808           | 522                    | 0.1897                         | 9              | 802       | 494             | 0.2105                           |
| 10        | 765           | 479                    | 0.2034                         | 10             | 760       | 452             | 0.2257                           |
| 12        | 695           | 409                    | 0.5303                         | 12             | 690       | 382             | 0.2567                           |
| 15        | 617           | 331                    | 0.2702                         | 15             | 615       | 307             | 0.3018                           |
| 18        | 558           | 272                    | 0.3120                         | 18             | 562       | 244             | 0.3622                           |
| 21        | 510           | 224                    | 0.3224                         | 21             | 520       | 212             | 0.3897                           |
| 25        | 460           | 174                    | 0.4223                         | 25             | 476       | 168             | 0.4523                           |
| 30        | 415           | 129                    | 0.2014                         | 30             | 433       | 125             | 0.2394                           |
| œ         | 286           |                        |                                | ø              | 308       |                 |                                  |
|           | Bromo-n-1     | oropylbarbitu          | ric acid (I).                  |                | Bromoisot | propylbarbiti   | ric acid (II).                   |
| 2         | 1620          | 1320                   | 0.0880                         | 9              | 860       | 653             | 0.1106                           |
| 3         | 1320          | 1020                   | 0.1120                         | ว้             | 730       | 593             | 0.1448                           |
| 4         | 1150          | 850                    | 0.1313                         | 3              | 640       | 133             | 0.1607                           |
| 5         | 1030          | 730                    | 0.1405                         | 5              | 574       | 400<br>967      | 0.1042                           |
| 6         | 948           | 642                    | 0.1666                         | 6              | 593       | 316             | 0.9188                           |
| 7         | 875           | 575                    | 0.1893                         | 7              | 181       | 977             | 0.2188                           |
| 8         | 818           | 518                    | 0.1985                         | Ś              | 404       | 949             | 0.2205                           |
| 9         | 774           | 474                    | 0.2129                         | å              | 494       | 212             | 0.2004                           |
| 10        | 703           | 403                    | 0.2427                         | 10             | 401       | 194             | 0.3153                           |
| 15        | 606           | 306                    | 0.2968                         | 15             | 394       | 117             | 0.4423                           |
| 18        | 552           | 252                    | 0:3405                         | 18             | 294       | 87              | 0.5288                           |
| 21        | 511           | 211                    | 0.3841                         | 22             | 266       | 59              | 0.6256                           |
| 25        | 467           | 167                    | 0.4456                         | 25             | 249       | 42              | 0.7730                           |
| 30        | 423           | 123                    | 0.5364                         | 30             | 227       | 20              | 1.0550                           |
| 80        | 300           |                        |                                | ŝ              | 207       | 20              |                                  |
|           | Bromobu       | utvlbarbituric         | acid (II).                     |                | Bromoise  | amylbarbitu     | ric acid (I).                    |
| 9         | 010           | 757                    | 0.0700                         | 9              | 2000      | 1605            | 0.0719                           |
| 2         | 750           | 707<br>507             | 0.0001                         | 2 9            | 2000      | 1095            | 0.0018                           |
| 1         | 659           | 400                    | 0.1161                         |                | 1940      | 1295            | 0.1199                           |
| 5         | 581           | 499                    | 0.1998                         | 4<br>5         | 1340      | 1035            | 0.122                            |
| 6         | 534           | 977                    | 0.1328                         | 6              | 1070      | 765             | 01255                            |
| 7         | 109           | 330                    | 0.1619                         | 7              | 1070      | 675             | 0.1610                           |
| 8         | 459           | 306                    | 0.1761                         | 8              | 917       | 608             | 0.1785                           |
| ğ         | 433           | 280                    | 0.1803                         | Q Q            | 860       | 555             | 0.1902                           |
| 10        | 412           | 259                    | 0.2016                         | 10             | 815       | 510             | 0.2036                           |
| 12        | 376           | 223                    | 0.2269                         | 12             | 744       | 439             | 0.2291                           |
| 15        | 335           | 182                    | 0.2654                         | 15             | 663       | 358             | 0.2676                           |
| 18        | 303           | 150                    | 0.3053                         | 18             | 602       | 294             | 0.2968                           |
| 21        | 278           | 125                    | 0.3571                         | 21             | 553       | 248             | 0.3482                           |
| 25        | 253           | 100                    | 0.4031                         | 25             | 503       | 198             | 0.4049                           |
| 30        | 228           | 75                     | 0.4828                         | 30             | 454       | 149             | 0.4839                           |
| œ         | 153           |                        |                                | 80             | 305       |                 |                                  |
|           |               |                        | Dibromobarbi                   | turic aci      | d (I).    |                 |                                  |
| 2         | 564           | 407                    | 0.1417                         | 9              | 288       | 131             | 0.3421                           |
| 3         | 475           | 318                    | 0.1743                         | 10             | 275       | 118             | 0.3674                           |
| 4         | 416           | 259                    | 0.2058                         | 12             | 253       | 96              | 0.4208                           |
| $\hat{5}$ | 376           | 219                    | 0.2348                         | 15             | 230       | 73              | 0.4984                           |
| 6         | 346           | 189                    | 0.2626                         | 21             | 202       | 45              | 0.6522                           |
| 7         | 324           | 167                    | 0.2878                         | <b>26</b>      | 180       | 23              | 0.8836                           |
| 8         | 304           | 147                    | 0.3156                         | -<br>          | 157       |                 |                                  |

The numbers in parentheses after the name of the bromo-acid indicate the cell used in that experiment, the constant of cell I being 0.310 and that of cell II 0.152. The experimental solutions were prepared by running equal volumes of the colloidal platinum sol and an M/200-solution of the bromoacid of appropriate alcoholic content into the conductivity cell, all solutions and vessels having previously attained temperature equilibrium in a thermostat at 30°. Resistances were measured on a Pye dial-type bridge, the null point being determined by means of an oscillator combination.

An alkylbarbituric acid is produced as a reaction product in the reduction, so it was thought desirable to examine the stability of solutions of such substances in the presence of colloidal platinum, but very slight change in resistance was found on standing; *e.g.*,

the resistance of an M/400-solution of 5-methylbarbituric acid only varied from 299 to 302 ohms in 3 days, whilst an M/400-solution of *iso*amylbarbituric acid showed a change from 1034 to 1057 ohms during 15 days.

The results obtained in a typical series of reduction experiments are set out in the table on p. 771, and plotted in the fig. In all these cases the solutions contained 10% of alcohol, and the same sample of colloidal platinum (Pt IV) was used throughout. The infinity readings were taken at the end of an hour and were found to be practically unchanged after 12 hours.

The graphs shown in the fig. are straight lines over the major part of the observations, and indicate the unimolecular nature of the reaction. On account of the difficulty of obtaining reliable values in the early stages of the reduction (when the resistance is changing considerably), the initial portions of the graphs are somewhat curved; the initial time t, was therefore taken as 4 minutes in deriving the average values of k set out below.

| Substituted barbituric acid. | 100 k. | Substituted barbituric acid. | 100 k. |
|------------------------------|--------|------------------------------|--------|
| 5-Bromo-5-methyl-            | 1.41   | 5-Bromo-5-butyl              | 1.40   |
| 5-Bromo-5-ethyl-             | 1.50   | 5-Bromo-5-isoamyl            | 1.56   |
| 5-Bromo-5-propyl-            | 1.52   | 5 : 5-Dibromo                | 2.80   |
| 5-Bromo-5-isopropyl-         | 2.53   |                              |        |

The rate of reduction of the bromo-acids in general varies but slightly with the mass of the alkyl group, but the *iso* propyl acid is a marked exception to the ordinary behaviour. In all the determinations, its rate of reaction exceeded those of other members of the series, and in this connexion it may be recalled that the value of its dissociation constant is also an exception to the general increase in the values observed for successive members of the series.

It has been pointed out that, on account of the concentrations used, the alcoholic content of the solutions may be considered to remain constant, thus giving a reaction of the unimolecular type. For different alcoholic concentrations, however, the velocity constants may be expected to vary, and this is in fact realised in practice :

Solute : 5-Bromo-5-isoamylbarbituric acid.

| Solvent, alcohol, % | 2     | 5     | 10    | 10    | 40    |
|---------------------|-------|-------|-------|-------|-------|
| Catalyst            | Pt VI | Pt VI | Pt VI | Pt II | Pt II |
| 100 k               | 1.00  | 1.53  | 2.36  | 1.05  | 2.06  |

The values show that although k increases with alcoholic concentration, a simple proportionality is not found. The failure of the mass law is not unusual in cases where reactions occur at catalytic surfaces, particularly when the concentrations used are high. In the extreme case where all the active points of the catalyst are engaged, further increase in the concentration of a reactant would leave the velocity constant unaffected.

In general, it is also to be expected that the velocity constant will increase as the concentration of the catalyst rises. On this account, the relative velocities of reduction of the series of bromo-acids were determined with the catalyst of uniform activity throughout. Definite estimations of the amounts of platinum in the various samples were not made, since it is well known that the actual colloid content of a sol is not directly related to its activity. Colloidal platinum offers no exception to this behaviour, and different samples prepared under the same conditions are often found to be of widely differing activities. Examples of changes in the reaction velocities with various samples of colloidal platinum are given below. The solvent in all cases contained 10% of alcohol.

| Barbituric acid.    | Catalyst. 100 k<br>Pt I 0.10 |      | Barbituric acid.  | Catalyst.<br>Pt II | 100 k.<br>1·05 |
|---------------------|------------------------------|------|-------------------|--------------------|----------------|
| 5-Bromo-5-propyl    |                              |      | 5-Bromo-5-isoamyl |                    |                |
| ,,                  | Pt III                       | 1.10 | ,,                | Pt IV              | 1.56           |
| ,,                  | Pt IV                        | 1.52 | ,,                | Pt V               | 2.01           |
| 5-Bromo-5-isopropyl | Pt I                         | 0.13 | ,,                | Pt VI              | 2.36           |
| ,,                  | Pt III                       | 2.06 |                   |                    |                |
| ,,                  | Pt IV                        | 2.53 |                   |                    |                |

These constants may be used to compare the catalytic activity of different sols or even to prepare by dilution two sols of comparable strength. The abnormalities in the activity of different platinum sols are strikingly emphasised by observing the effect of dilution; *e.g.*, Pt I was obtained by diluting Pt IV to four volumes with distilled water; but the effect on the velocity constant was a decrease, not of 1/4, but of 1/15 in the case of 5-bromo-5-propyl-, and of 1/19 in that of 5-bromo-5-*iso*propylbarbituric acid. Such abnormal changes are difficult to explain and are being further examined. Experiments were also carried out with colloidal catalysts other than platinum, notably colloidal silver and colloidal tungsten. These were prepared by sparking methods, the technique followed being similar to that adopted in the case of colloidal platinum. Colloidal silver, which has silver hydroxide present as an electrolyte, was quite unsuitable on account of the side reactions with hydrobromic acid. The activity of colloidal tungsten was small compared with that of colloidal platinum, and the reaction was not completed even after 14 days.

## SUMMARY.

The 5-bromo-5-alkylbarbituric acids are rapidly reduced by alcohol in presence of colloidal platinum, but only slowly in presence of colloidal tungsten. When the concentration of alcohol is sufficiently high to be assumed constant throughout, the reductions are unimolecular.

In general, the velocity constant varies little with the alkyl group, but the *iso*propyl acid shows an exceptional increase.

Changes in the velocity constant due to variations in the concentration of alcohol and in colloid content are also examined.

THE JOHNSON LABORATORIES, UNIVERSITY OF ADELAIDE. [Received, February 12th, 1934.]